

Space in Horizon 2020 (2014-2020) Horizon Europe (2021-2027)

ESSC Plenary meeting "On-Line" 15 May 2020

Space Research, Innovation and Start-ups, DG DEFIS/B2

HORIZON 2020

European Union programme for research and innovation for 2014-2020

LINKS TO OTHER H2020 PARTS

Priority 1 Excellent science

- European Research Council (ERC)
- Future and Emerging Technologies (FET)
- ✓ Marie Sklodowska-Curie Actions
- ✓ Research infrastructures

Priority 2 Industrial leadership

- Leadership in enabling and industrial technologies (LEIT)
 - Information and Communication Technologies (ICT)
 - o Nanotechnologies
 - o Biotechnology
 - Advanced manufacturing and Processing
 - Space
- Access to risk finance
- Innovation in SMEs

Priority 3 Societal challenges

- SC1 Health, demographic change and well-being
- SC2 Food security, sustainable agriculture and forestry, Marine, Maritime and Inland water research, and Bioeconomy
- SC3 Secure, clean and efficient energy
- SC4 Smart, green and integrated transport
- SC5 Climate action, Environment, Resource efficiency and Raw materials
- SC6 Europe in a changing world Inclusive, Innovative and Reflective societies
- SC7 Secure societies Protecting freedom and Security of Europe and its citizens

SPACE RESEARCH

Maximising benefits of space for society and EU economy

SPACE-EO

- EO market uptake
- Copernicus mission and services evolution

SPACE-EGNSS

 EGNSS market uptake
EGNSS infrastructure, mission and services evolution

SPACE-BIZ

- · Support to space hubs
- Space outreach and education
- EIC Horizon Prize on "Low cost Space Launch"
- InnovFin Space Equity Pilot (ISEP)
- SME-instrument
- FTI Fast Track to Innovation

Globally competitive and innovative space sector

SPACE-SCI

SPACE-TEC

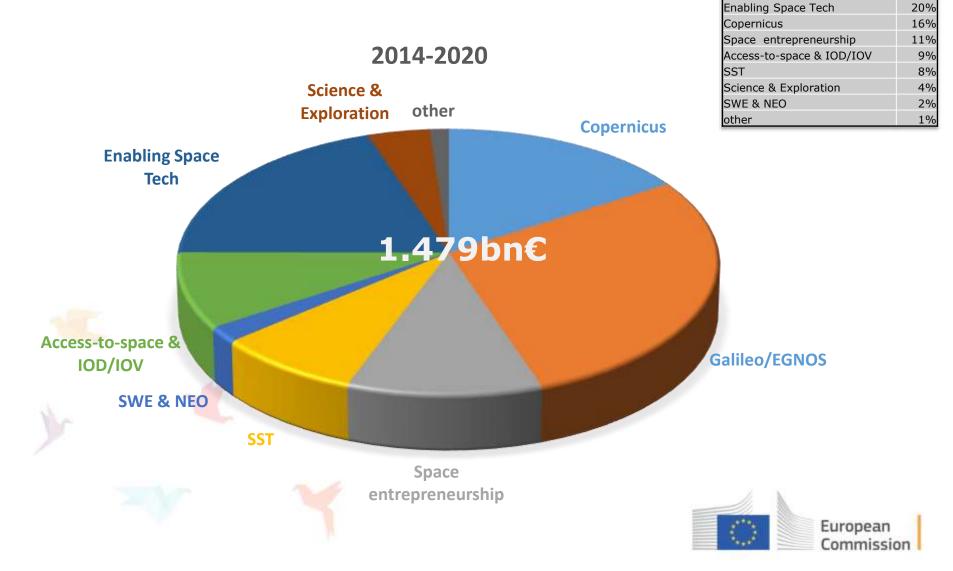
Technologies for European nondependence and competitiveness

- Space robotics
- Electric propulsion
- Generic space technologies
- EO and SatCom technologies
- Scientific instrumentation and technologies for exploration
- Scientific data exploitation

Access to space & Secure and safe space environment

SPACE-TEC

- Access to space
- In-Orbit-Demonstration/Validation (IOD/IOV)


SPACE-SEC

- Space weather (SWE)
- Space traffic management (STM)
- Space Surveillance and Tracking (SST)
- Near Earth Objects (NEOs)

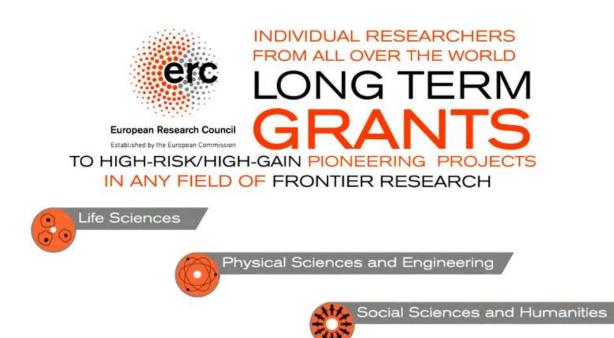
H2020 PRIORITY 2: INDUSTRIAL LEADERSHIP

SPACE RESEARCH BUDGET IN HORIZON 2020

Galileo/EGNOS

29%

HORIZON 2020


Opportunities in Priority 1 Excellent Science

The ERC offers...

European Research Council Established by the European Commission

Who can apply?

Researchers (PIs)

- of any nationality
- of any age (>2 yrs. from Ph.D.)
- from any current working place in the world
- on any topic (bottom-up)
- requirement letter of support from a Host Institution (HI) based in EU or associated countries (exc. 1 PI in SyG)

Only selection criterion: Excellence

→ research project and principal investigator
Highly competitive: overall success rate tending to 12%
→ "flat" across degree of professional seniority and topics

Evaluation Panel Structure

Panel structure (and panel descriptors) do <u>not</u> represent ERC scientific priorities

European Research Council Established by the European Commission

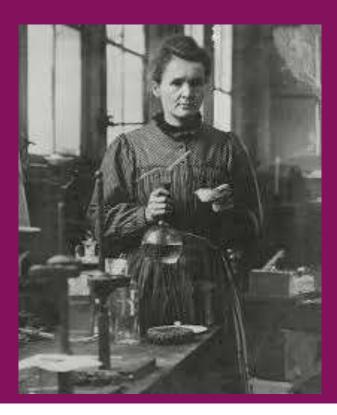
Each panel: Panel Chair and 10-16 Panel Members

Life Sciences

- LS1 Molecular Biology, Biochemistry, Structural Biology and Molecular Biophysics
- LS2 Genetics, 'Omics', Bioinformatics and Systems Biology
- LS3 Cellular and Developmental Biology
- LS4 Physiology, Pathophysiology and Endocrinology
- LS5 Neuroscience and Neural Disorders
- LS6 Immunity and Infection
- LS7 Applied Medical Technologies, Diagnostics, Therapies and Public Health
- LS8 Ecology, Evolution and Environmental Biology
- LS9 Applied Life Sciences, Biotechnology and Molecular and Biosystems Engineering

Physical Sciences & Engineering

- PE1 Mathematics
- PE2 Fundamental Constituents of Matter
- PE3 Condensed Matter Physics
- PE4 Physical and Analytical Chemical Sciences
- PE5 Synthetic Chemistry and Materials
- PE6 Computer Science and Informatics
- PE7 Systems and Communication Engineering
- PE8 Products and Processes Engineering
- PE9 Universe Sciences
- PE10 Earth System Science


Social Sciences and Humanities

- SH1 Individuals, Markets and Organisations
- SH2 Institutions, Values, Environment and Space
- SH3 The Social World, Diversity, Population
- SH4 The Human Mind and Its Complexity
- SH5 Cultures and Cultural Production
- SH6 The Study of the Human Past

Marie Skłodowska-Curie Actions

Education and Culture

MSCA: the different actions

ITN: h	ost-driven, early-stage researchers				
network recruiting ~PhD candidates					
	IF: individual, experienced researchers				
	incoming & outgoing ~post-docs				
€6.2 billion					
2014-2020	RISE: exchange of all types of research staff				
65000+	with non-European entities and/or private sector				
researchers					
	COFUND: co-funding e.g. national schemes				
\setminus /	for doctoral or post-doctoral training				
\backslash /					
European Researchers' Night					
s	cience festival, outreach				

European Commission

Space research in MSCA

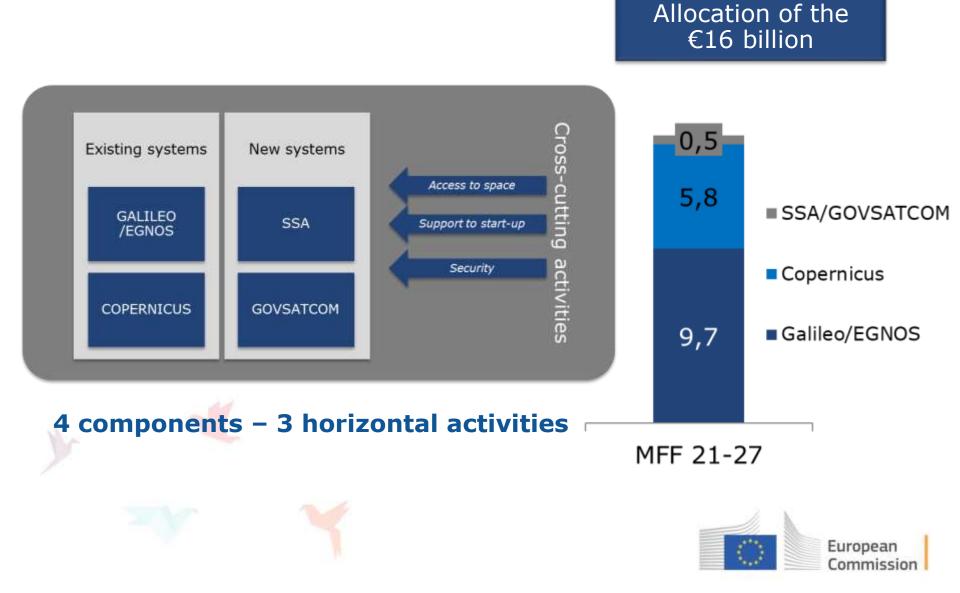
Keywords	MSCA-IF	MSCA-ITN	MSCA- RISE	Sum:
Aerospace engineering	46	30	4	80
Astronomy (including astrophysics, space science)	55	3	3	61
Earth observations from space/remote sensing	81	4	11	96
Space Sciences	3			3
Space weather	4			4
Unique projects (not sum!)	184	37	18	239
Budget (EUR million)	34.7	118.2	18.9	171.8

You can do your own project search (keywords, filters) in Cordis:

https://cordis.europa.eu/projects/en

EU Space Programme & Horizon Europe

Commission Space related proposals for next MFF



EU Space Programme

https://europa.eu/rapid/press-release_IP-18-4022_en.htm

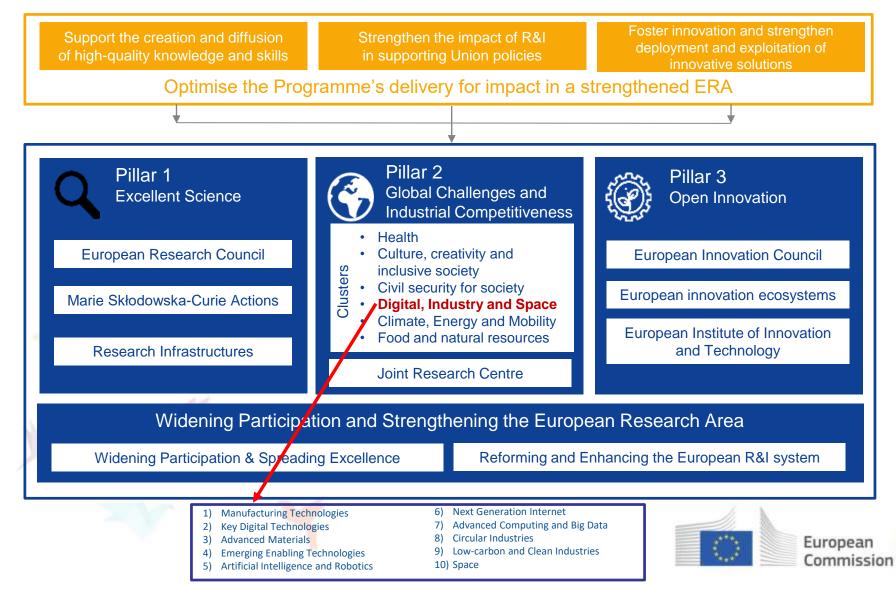
EU SPACE PROGRAMME

Horizon Europe

#HorizonEU

https://ec.europa.eu/info/horizon-europe-next-research-and-innovation-framework-programme_en

HORIZON EUROPE 2021-2027



European Commission

allocated under the InvestEU Fund.

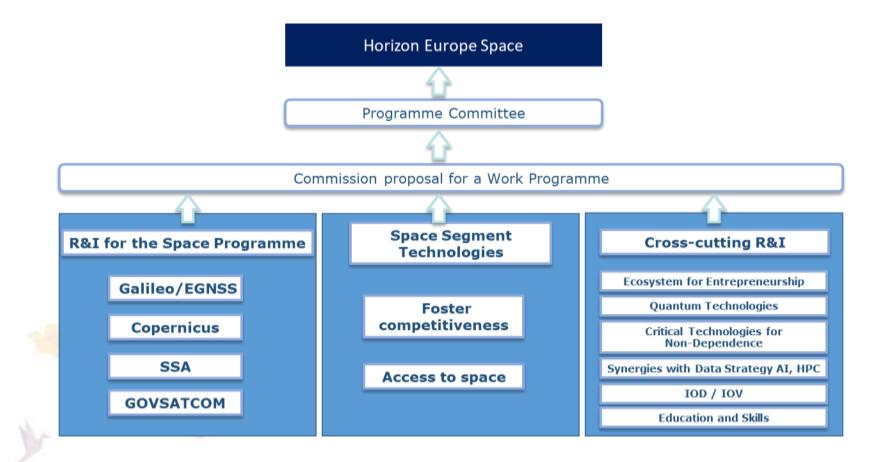
YY

Specific objectives of the Programme

Intervention Area Space

Broad lines

- Galileo and EGNOS: innovative applications, global uptake including international partners. Next generation systems
- Copernicus: innovative applications, global uptake and international partners. Earth observation data techniques. Next generation systems.
- Space Situational Awareness: robust EU capacity to monitor and forecast state of the space environment e.g. space weather, space debris and near Earth objects
- Secure Satellite Communications for EU governmental actors: solutions for the widest possible range of governmental users
- End-to-end Satellite Communications for citizens and businesses: costeffective, advanced satellite communications to connect assets and people in underserved areas



Intervention Area Space

Broad lines (continued)

- Non-dependence and sustainability of the supply chain: increased technology readiness levels in satellites and launchers;
- Space ecosystem:
 - in-orbit validation and demonstration services;
 - space demonstrators e.g., hybrid, smart or reconfigurable satellites, in-orbit manufacturing and assembly, launcher reusability, in-orbit servicing and micro-launchers;
 - breakthrough innovations, and technology transfer, in areas such as recycling, green space, artificial intelligence, robotics, digitisation, costefficiency, miniaturisation
- Space science: exploitation of scientific data delivered by scientific and exploration missions, combined with the development of innovative instruments in an international environment

Foster Competitiveness

Foster Competitiveness of end to end systems and associated services

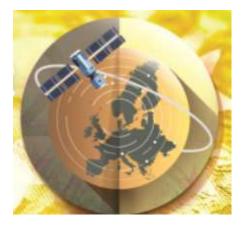
Top-Down, application driven, 3 to 5 years to market

- Telecommunication Systems
 - Earth Observation
 - Ground Segment
 - Data Chain

New industrial processes and production tools

- · Digitalisation and automation
 - MAIT at larger scale
- · Lean qualification processes

(MAIT: Manufacturing, Assembly, Integration and Testting)


Future space ecosystems: onorbit operations, new system concepts

Preparing the future, 3 to 15 years to market

- New services incl. de-orbiting, active debris removal
 - On-Orbit servicing, assembly, manufacturing
- New systems concepts incl. modularity

Enabling technologies

- Cross masion, space and ground, bottom-up
- Misruptive technologies and concepts
- Technology maturation in the view of qualification
- In-orbit demonstration and validation

Contribution to space science

- · Exploitation of mission and science data
- Cutting-edge scientific instrumentation in support of missions
- Development of advanced planetary robotic exploration techniques
 - Early development work for potential scientific missions

Indicative timeline

2019 - early 2020

- Development of a Strategic Research and Innovation Agenda, with stakeholders (industry associations, research establishments/associations)
- Orientation towards Horizon Europe strategic plan

Now – July:

- Elaboration of the Horizon Europe Strategic Plan
- Further consultations with stakeholders for WP 2021-2022
- Meetings with Member States

Q3 – Q4: Finalisation of Work Programme 2021-2022 with MS

2021: Publication of Work Programme 2021-2022

Thank you for your attention

mats.ljungqvist@ec.europa.eu

