

Space in Horizon 2020 (2014-2020) Horizon Europe (2021-2027)

ESSC Plenary meeting "On-Line" 27 November 2020

Space Research, Innovation and Start-ups, DG DEFIS/B2

HORIZON 2020

European Union programme for research and innovation for 2014-2020

LINKS TO OTHER H2020 PARTS

Priority 1 Excellent science

- European Research Council (ERC)
- Future and Emerging Technologies (FET)
- Marie Sklodowska-Curie Actions
- Research infrastructures

- Leadership in enabling and industrial technologies (LEIT)
 - Information and Communication Technologies (ICT)
 - o Nanotechnologies
 - o Biotechnology
 - Advanced manufacturing and Processing
 - Space
- Access to risk finance
- Innovation in SMEs

Priority 3 Societal challenges

- SC1 Health, demographic change and well-being
- SC2 Food security, sustainable agriculture and forestry, Marine, Maritime and Inland water research, and Bioeconomy
- SC3 Secure, clean and efficient energy
- SC4 Smart, green and integrated transport
- SC5 Climate action, Environment, Resource efficiency and Raw materials
- SC6 Europe in a changing world Inclusive, Innovative and Reflective societies
- SC7 Secure societies Protecting freedom and Security of Europe and its citizens

HORIZON 2020

Opportunities in Priority 1 Excellent Science

The ERC offers...

European Research Council Established by the European Commission

Marie Skłodowska-Curie Actions

Education and Culture

HORIZON 2020

Opportunities in Priority 2

Space

H2020 PRIORITY 2: INDUSTRIAL LEADERSHIP

SPACE RESEARCH BUDGET IN HORIZON 2020

Galileo/EGNOS

29%

SPACE RESEARCH

Maximising benefits of space for society and EU economy

-	_	-	-	_	_	_
9	D	Λ.		= -		\mathbf{n}
0		=	9			U

SPACE-EGNSS

- EO market uptake
- Copernicus mission and services evolution
- EGNSS market uptake
- EGNSS infrastructure, mission and services evolution

SPACE-BIZ

- · Support to space hubs
- Space outreach and education
- EIC Horizon Prize on "Low cost Space Launch"
- InnovFin Space Equity Pilot (ISEP)
- SME-instrument
- FTI Fast Track to Innovation

Globally competitive and innovative space sector

SPACE-SCI

SPACE-TEC

- Technologies for European nondependence and competitiveness
- Space robotics
- Electric propulsion
- Generic space technologies
- EO and SatCom technologies
- Scientific instrumentation and technologies for exploration Scientific data exploitation

Access to space & Secure and safe space environment

SPACE-TEC

- Access to space
- In-Orbit-Demonstration/Validation (IOD/IOV)

SPACE-SEC

- Space weather (SWE)
- Space traffic management (STM)
- Space Surveillance and Tracking (SST)
- Near Earth Objects (NEOs)

Science and exploration

H2020-SPACE-2014-2020 Science and exploration

Commission

Executive Agency

Funded projects by area

Funded projects by area

AIDA

2021

2022

2023

2024 Research Executive Agency

2020

EWC

2019

2015

2016

2017

2018

Understanding Planet Mars With Advanced Remote-					
sensing Datasets and Synergistic Studies					
Multi-instrument analysis of Rosetta data – Establishing					
a new paradigm for cometary activity					
Planetary Terrestrial Analogues					
Library					
Small Bodies:					
Near and Far					
Planetary Protection of					
Outer Solar System					
Planetary					
Mapping					
Ultimate modelling of Radio foregrounds: a key					
ingredient for cosmology					
A Gaia and Herschel Study of the Density Distribution					
and Evolution of Young Massive Star Clusters					
Beyond Planck - delivering state-of-the-art observations of					
the microwave sky from 30 to 70 GHz for the next decade					
Exoplanet Athmosphere New Emission Transmission					
Spectra Analysis					
Enabling Weak					
lensing Cosmology					
Artificial Intelligence					
Data Analysis					

7 projects

* proposals from the Reserve list in GAP

ROADMAP

ROle and impAct of Dust and clouds in the Martian Atmosphere: from lab to space

- Improve our understanding of the Martian atmosphere, with focus on aerosols (dust and ice clouds);
- $_{\odot}$ Define and create a more adequate and representative Martian dust analogue
- Obtain relevant laboratory measurements to improve the radiative modelling of the Martian dust and clouds;
- Develop specific models to improve the parameterization of dust and clouds within Global Circulation Models (GCMs);
- Improve the analysis of past and current missions to Mars considering the new laboratory data and the new tools/models;
- Improve the modelling of the global Martian climate through specific models and through GCMs to provide a more realistic atmospheric climatology

Innovative Scientific Data Exploration and Exploitation Applications for Space Sciences

- Deployment of machine learning (ML) and advanced visualization tools to achieve efficient, user-friendly, realistic exploitation of scientific data from astrophysics and planetary space missions, as well as from supporting groundbased massive surveys.
- Development of 6 high-level tools and methods implemented as Scientific Data Applications, which address large scientific audience: Two related to Lunar observation, Two related to Galactic Science Two related to stellar characterization
- Available on a dedicated cloud solution EXPLORE-TEP
- Available on existing cloud platforms ESCAPE Science Application Platform and the ESA Datalabs

Who is In, and Who is Not? Determining the Gaia Survey Selection Function

- Develop a detailed mathematical formulation of a survey selection function* with focus on the Gaya survey,
- Develop a detailed description and modelling of the Gaia survey selection function and for the combination of Gaia and other surveys
- Practical implementation of the Gaia selection function in the form of auxiliary data,
 - ✓ accessible through the ESA Science Data Centre, and open source tools
 - ✓ made available through code hosting platforms.
- Develop tools to incorporate the selection function in scientific analyses

 $_{\odot}$ Application of the selection function tools to example science cases.

* the probability that an object with certain observed properties at a given position on the sky would be catalogued by Gaia.

SERPENTINE

Solar EneRgetic ParticlE aNalysis plaTform for the INner hEliosphere

- A major step in understanding large and widespread gradual Solar Energetic Particle (SEP) events
- Motivated by the science objectives of Solar Orbiter and Parker Solar Probe
- Building the world's most advanced platform for SEP studies, including:
 - ✓ high-level data products, catalogs and datasets,
 - ✓ analysis and
 - ✓ visualization tools.

SHocks: structure, AcceleRation, dissipation

- Advances understanding of the physics of charged particle acceleration and heating and collisionless dissipation in Collisionless Shocks (CSs) across a range of scales in the Universe
- \circ Exploitation of the wide diversity of CSs observed by ESA and NASA heliospheric missions
- $\ensuremath{\circ}$ Improved understanding of
 - ✓ the acceleration of particles at CSs
 - ✓ particle acceleration at astrophysical shocks
- Developing a high-level databases of shocks and advanced tools for the shock analysis

H2020-SPACE-2014-2020 Science

Agency

Success story SBNAF Coordinator: MPE/Germany www.sbnaf.eu

- ✓ Addressed critical points in the reconstruction of physical and thermal properties of near-Earth, main-belt, and trans-Neptunian objects.
- ✓ Established the first database of thermal infrared observations of small bodies in the solar system, with more than 170,000 thermal infrared measurements of asteroids from space infrared telescopes.
- ✓ Developed high-quality 3D shape models for selected asteroids.
- Upgraded Interactive service for asteroid models (ISAM); it it includes models and data for more than 1600 asteroids.

 ✓ High-quality predictions for occultation events resulting in successful detections of occultation's of transneptunian objects and Centaurs;

✓ Numerous outreach events;

 ✓ 74 scientific publications among which article about the discovery of ring around the Haumea dwarf planet in Nature

" The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation"

https://www.nature.com/articles/nature24051

LUVMI-X is a small, autonomous lunar rover with big ambitions. Equipped with innovative instrumentation, it aims to search out water and other volatiles on the lunar surface.

HERMES-SP (2018 - ongoing)

Achievements

- Exploitation of previous technological studies for the design and the realization of the GRB detector (cutting-edge instrumentation for scientific missions)
- Constellation of detectors to improve the localization performance compared to the actual systems
- Interest of the scientific community since the early stage of the project / international cooperation

Secure and safe space environment

Space Weather	GovSatCom			
NEOs	STM			
Debris Mitigation	SST			
Research Executive				

Agency

H2020 LEIT SPACE Secure and safe space environment

H2020 LEIT SPACE Space Weather

9 projects M€ 17.8

European Commission FLARECAST - Flare likelihood and region eruption forecasting **HESPERIA High energy** solar particle events **EUHFORIA 2.0 European** forecasting and heliospheric forecasting Heliosphere focused analysis information asset 2.0 research and applications **PROGRESS** - Prediction of geospace radiation environment and solar wind parameters SWAMI - Space weather atmosphere model and indices SafeSpace - Radiation belt environmental indicators for the Magnetosphere focused safety of space assets research and applications PAGER - Prediction of adverse effects of geomagnetic storms and energetic radiation **TechTIDE - Warning and** Ionosphere focused research mitigation technologies for and applications travelling ionospheric disturbances effects **ESC2RAD** - Enabling smart **Radiation effects** computations to study space radiation effects Research 2014 2015 2016 2021 2022 2017 2018 2019 2023 Executive Agency

Thank you for your attention

mats.ljungqvist@ec.europa.eu

